什么大数据?
一、什么大数据?
大数据是指规模庞大、复杂多样的数据集合,无法使用传统的数据处理工具和方法进行处理和分析。大数据通常具有以下特点:
1. 体量大:大数据集合的数据量通常非常庞大,以至于无法使用传统的数据库和软件工具进行处理。
2. 多样性:大数据集合包含多种类型的数据,包括结构化数据(如数据库中的表格数据)、半结构化数据(如XML文件)和非结构化数据(如文本、图像、音频和视频等)。
3. 时效性:大数据集合的数据更新速度非常快,需要实时或近实时地进行处理和分析。
4. 价值密度低:大数据集合中的数据通常包含大量的噪音和冗余信息,需要通过数据挖掘和分析技术提取有价值的信息。
大数据的处理和分析需要借助于大数据技术和工具,如分布式计算、云计算、机器学习和人工智能等。大数据的应用领域非常广泛,包括商业智能、市场营销、金融风控、医疗健康、交通运输、能源管理等。
二、大数据最显著的特征是价值大?
大数据特征为:大量、高速、多样化、有价值、真实。
大量,指大数据量非常大。高速,指大数据必须得到高效、迅速的处理。
多样化,体现在数据类型的多样化,除了包括传统的数字、文字,还有更加复杂的语音、图像、视频等。
有价值,指大数据的价值更多地体现在零散数据之间的关联上。真实,指与传统的抽样调查相比,大数据反映的内容更加全面、真实。
三、现在说的大数据是什么意思?
大数据顾名思义就是海量的数据堆在一起,就现成了大数据,大数据分实时时间和历史数据,大数据又分it数据,ot数据,视频时间,图像数据,时空数据等多类型数据,大数据的目的就是实现更智慧,更智能。大数据不去挖掘分析就是一堆无用的数据,所以就必须各种行业应用专家去建模,去分析挖掘。因此在大数据面前,行业专家最吃香,码农一抓一大把,模型专家有几个。对于企业大数据分析挖掘可以为企业提高效率,提高品质,降低成本等等若干优点,越是规模大的企业,大数据挖掘价值越大,给你举2个例子,一个就是九江某石化公司,没有进行大数据挖掘优化前年年亏损,挖掘优化后,他的效率提高了,他的品质提供了,现在每年盈利20多个亿,在石化行业,产品分多个品质,提高几个百分点就是另外一个品质,价格差异很大,这些企业产量相当惊人,上升1个百分点都很厉害。再举个例子,滴滴优化分配问题,因为他们一段时间内产生数据量太大,没有优化前,为了解决实时性问题,用了几百万硬件堆叠,用硬件解决性能问题,优化后,一台笔记本解决,所以学好数学还是很关键的。
四、什么是大数据高智能互联网?
大数据高智能互联网是一个基于大数据技术的互联网平台,旨在为个人和企业提供更加智能、高效和便捷的互联网服务。它可以通过数据挖掘和分析技术,快速获取有价值的信息,并利用人工智能技术对信息进行处理和分类,最终为用户提供个性化的推荐和服务。
在大数据高智能互联网的框架下,人们可以使用各种终端设备(如手机、电脑、智能家居等)连接到互联网,并享受各种便捷的服务,如智能搜索、个性化推荐、社交网络、电子商务等。同时,大数据高智能互联网还可以为企业提供智能化的商业分析和决策支持,帮助企业提高运营效率和市场竞争力。
大数据高智能互联网的核心技术包括数据挖掘、机器学习、自然语言处理、图像识别等,这些技术可以实现对海量数据的分析和处理,提取出有价值的信息和知识,并通过人工智能技术进行智能化的决策和推荐。
总之,大数据高智能互联网是一种基于大数据技术的互联网平台,旨在为用户提供更加智能、高效和便捷的互联网服务,同时为企业提供智能化的商业分析和决策支持。
五、大数据是什么意思?
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
简言之,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。明白这一点至关重要,也正是这一点促使该技术具备走向众多企业的潜力。 大数据的4个“V”,或者说特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。前文提到的网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。1秒定律。最后这一点也是和传统的数据挖掘技术有着本质
的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。 物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式 著云台
例子包括网络日志,RFID,传感器网络,社会网络,社会数据(由于数据革命的社会),互联网文本和文件;互联网搜索索引;呼叫详细记录,天文学,大气科学,基因组学,生物地球化学,生物,和其他复杂和/或跨学科的科研,军事侦察,医疗记录;摄影档案馆视频档案;和大规模的电子商务。
大的数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
一些但不是所有的MPP的关系数据库的PB的数据存储和管理的能力。隐含的负载,监控,备份和优化大型数据表的使用在RDBMS的。
斯隆数字巡天收集在其最初的几个星期,比在天文学的历史,早在2000年的整个数据收集更多的数据。自那时以来,它已经积累了140兆兆 字节的信息。这个望远镜的继任者,大天气巡天望远镜,将于2016年在网上和将获得的数据,每5天沃尔玛处理超过100万客户的交易每隔一小时,反过来进口量数据库估计超过2.5 PB的是相当于167次,在美国国会图书馆的书籍 。
FACEBOOK处理400亿张照片,从它的用户群。解码最初的人类基因组花了10年来处理时,现在可以在一个星期内实现。
“大数据”的影响,增加了对信息管理专家的需求,甲骨文,IBM,微软和SAP花了超过15亿美元的在软件智能数据管理和分析的专业公司。这个行业自身价值超过1000亿美元,增长近10%,每年两次,这大概是作为一个整体的软件业务的快速。 大数据已经出现,因为我们生活在一个社会中有更多的东西。有46亿全球移动电话用户有1亿美元和20亿人访问互联网。
基本上,人们比以往任何时候都与数据或信息交互。 1990年至2005年,全球超过1亿人进入中产阶级,这意味着越来越多的人,谁收益的这笔钱将成为反过来导致更多的识字信息的增长。思科公司预计,到2013年,在互联网上流动的交通量将达到每年667艾字节。
最早提出“大数据”时代已经到来的机构是全球知名咨询公司麦肯锡。麦肯锡在研究报告中指出,数据已经渗透到每一个行业和业务职能领域,逐渐成为重要的生产因素;而人们对于海量数据的运用将预示着新一波生产率增长和消费者盈余浪潮的到来。
“麦肯锡的报告发布后,大数据迅速成为了计算机行业争相传诵的热门概念,也引起了金融界的高度关注。”随着互联网技术的不断发展,数据本身是资产,这一点在业界已经形成共识。“如果说云计算为数据资产提供了保管、访问的场所和渠道,那么如何盘活数据资产,使其为国家治理、企业决策乃至个人生活服务,则是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。”
事实上,全球互联网巨头都已意识到了“大数据”时代,数据的重要意义。包括EMC、惠普(微博)、IBM、微软(微博)在内的全球IT 巨头纷纷通过收购“大数据”相关厂商来实现技术整合,亦可见其对“大数据”的重视。
“大数据”作为一个较新的概念,目前尚未直接以专有名词被我国政府提出来给予政策支持。不过,在12月8日工信部发布的物联网“十二五”规划上,把信息处理技术作为4项关键技术创新工程之一被提出来,其中包括了海量数据存储、数据挖掘、图像视频智能分析,这都是大数据的重要组成部分。而另外3项关键技术创新工程,包括信息感知技术、信息传输技术、信息安全技术,也都与“大数据”密切相关。