大数据5v-c模型特征的含义?

2024-04-09 15:29 来源:能进科技网

一、大数据5v-c模型特征的含义?

大数据的5V-C模型特征是指IBM提出的大数据理论模型,其中5V是指Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性),C则是指Complexity(复杂性)。

具体来说,Volume(大量)指的是数据的大小,包括采集、存储和计算的量都非常大,大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。Velocity(高速)指的是数据增长速度快,处理速度也快,时效性要求高,例如搜索引擎要求几分钟前的新闻能够被用户查询到,个性化推荐算法尽可能要求实时完成推荐。Variety(多样)指的是数据的种类和来源多样化,包括结构化、半结构化和非结构化数据,具体表现为网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。Value(低价值密度)指的是数据价值密度相对较低,或者说是浪里淘沙却又弥足珍贵,如何结合业务逻辑并通过强大的机器算法来挖掘数据价值,是大数据时代最需要解决的问题。Veracity(真实性)则指的是数据的质量。

至于Complexity(复杂性),它指的是数据量巨大,来源多渠道,这也是大数据的一个重要特征。

以上就是大数据5V-C模型特征的含义。

二、大数据挖掘是什么?

大数据挖掘是一种通过大规模数据分析和处理技术,从大数据中提取有用信息和知识的过程。它包括了数据预处理、数据挖掘、模型建立、模型评估以及结果解释等步骤。

大数据挖掘技术不仅可以发掘数据背后的潜在规律和模式,帮助企业做出决策,更可以在很多领域带来巨大的优势和发展机遇。现在,大数据挖掘已经成为一个非常重要的技术领域,越来越多的企业和机构开始将其用于业务管理、市场研究、运营优化等方面,以获得更高的效率和更大的利益。

三、大数据审计是什么?

大数据审计是利用数据库及编程语言完成大数据平台建设的工作人员,大数据审计需要具备相关专业知识,精通MySQL等数据库的使用,具备较强的分析能力。其工作职责包括:

1、完成大数据审计平台的建立,对现有数据分析方案进行更新与优化;

2、协助相关工作人员,完成大数据审计发展计划的初步方案撰写;

3、依据以往的数据分析结果,在大数据审计平台建立分析报告;

4、将数据分析中的异常情况报告给审计团队,根据审计团队的要求完成数据抽取与分析;

5、协助相关工作人员建立高风险数据评估预警体系;

6、协助审计部门完成大数据审计模型的搭建。

四、大数据分析中,有哪些常见的大数据分析模型?

常见数据分析模型有哪些呢?

1、行为事件分析:行为事件分析法具有强大的筛选、分组和聚合能力,逻辑清晰且使用简单,已被广泛应用。

2、漏斗分析模型:漏斗分析是一套流程分析,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。

3、留存分析模型留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始化行为的用户中,有多少人会进行后续行为。这是用来衡量产品对用户价值高低的重要方法。

4、分布分析模型分布分析是用户在特定指标下的频次、总额等的归类展现。

5、点击分析模型即应用一种特殊亮度的颜色形式,显示页面或页面组区域中不同元素点点击密度的图标。

6、用户行为路径分析模型用户路径分析,顾名思义,用户在APP或网站中的访问行为路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径的转换数据进行分析。

7、用户分群分析模型用户分群即用户信息标签化,通过用户的历史行为路径、行为特征、偏好等属性,将具有相同属性的用户划分为一个群体,并进行后续分析。

8、属性分析模型根据用户自身属性对用户进行分类与统计分析,比如查看用户数量在注册时间上的变化趋势、省份等分布情况。

五、大数据不能一次建模终身受益吗?

大数据建模并不是一次性的工作,随着时间的推移需要不断地更新和优化。因为大数据的特点是不断变化的,所以建模也需要随之进行调整。而且随着数据量的增加和新的业务需求的出现,建模也需要不断地迭代。因此,大数据的建模是一个持续发展的过程,只有不断地更新和优化才能终身受益。

六、大数据的核心步骤和方案?

(一)问题识别

  大数据分析的第一步是要清晰界定需要回答的问题。对问题的界定有两个标准,一是清晰、二是符合现实。

  (二)数据可行性论证

  论证现有数据是否足够丰富、准确,以致可以为问题提供答案,是大数据分析的第二步,项目是否可行取决于这步的结论。大数据和传统数据的生成方式有本质不同。传统数据往往是在识别问题、根据问题设计问卷、之后展开调查获得的数据,而大数据却是企业或者个体各类活动产生的附属产品。作为附属产品,大数据往往不是为了特定数据项目生成,也存在较高噪音。这就要求数据可行性论证过程需要仔细推敲,现有数据得出来的结论是否足够可靠。由于大数据分析技术本质属于数据挖掘法,过度拟合问题往往是大数据分析的难点。

  因此,在数据可行性论证主要涉及三个环节。第一,厘清项目需要的大数据、小数据和专业知识;第二,完成从抽象概念到具体指标的落实;第三,考察数据的代表性。

  (三)数据准备

  数据准备环节需要梳理分析所需每个条目的数据,为下一步建立模型做好从充分预备。这种准备可以分为数据的采集准备和清洗整理准备两步。

  1.数据的采集准备

  为大数据分析做数据采集准备时,往往不能回避下列问题:项目的数据预算有多少?配备的人员设备是否足够?项目预期数据采集的完成期限?项目打算用什么方法收集数据?哪些数据是可以通过自身努力来获取,哪些数据需要通过购买获得?哪些数据获取中会存在时间和经费上的不确定性?如果一些重要问题的答案是否定的或者含糊的,就可能需要重新回到数据可行性论证环节。这一点,对于希望用大数据分析做产品的小微企业、新创企业尤为重要。

  2.数据的清洗整理准备

  虽然数据清理包含不少常规处理,但是高质量的数据清理工作需要数据准备团队时刻对项目目标了然于胸。

  (四)建立模型

  大数据分析项目需要建立的模型可以分为两类。对于这两类模型,团队都需要在设立模型、论证模型的可靠性方面下功夫。

  1.专业领域模型

  大数据产品对应的项目可能有对应的专业领域模型,例如PEST分析模型、5W2H分析模型、逻辑树分析模型、4P营销理论模型、用户行为模型等。数据团队需要明确为何选择某个专业领域的模型。

  2.数据分析模型

  这类模型包含分析结构化数据的数据挖掘算法模型;处理非结构化数据的语义引擎;可视化策略等。流行观点中的大数据分析主要集中在对第二类模型的讨论上。

  建立模型时既需要强大运算能力,也需要专家的主观判断。

  (五)评估结果

  评估结果阶段是要评估上述步骤得到的结果是否足够严谨可靠,并确保数据分析结果能够有利于决策。评估结果包括定量评估和定性评估两部分。

  1.定量评估

  定量评估是关注主观标准的可靠性。数据挖掘分析方法在计算上虽然依靠技术,但不少关键节点依靠主观标准。

  2.定性评估

  定性评估的重点是考察大数据分析的结果是否合理、方案是否可行。

  在评估大数据分析的结果时,由于定性评估往往需要一段时间之后才能完成,因此将大数据分析结果用于现实时,需要采取审慎步骤。

  大数据分析五步法流程顺序.以上五大步骤构成一个完整的数据分析过程,中琛魔方大数据分析平台(www.zcmorefun.com)表示从开始思考目标到最后可视化呈现,从发现问题到提出解决方案,身为数据运营者,我们既需要有整体思维,能够从全流程去把握数据分析方法,也需要对细节极致追求,优化每一个步骤。当我们能够从整体和细节都游刃有余得进行数据分析的时候,你就是一个合格甚至优秀的数据运营者。

相关文章

  • 重庆移动 大数据
    重庆移动 大数据

    一、重庆移动 大数据 重庆移动 是中国移动通信集团公司的一个分支机构,致力于在通信行业领域不断创新发展。大数据作为信息时代的核心资源之一,已...

    2024-11-04
  • 广东 移动 大数据
    广东 移动 大数据

    一、广东 移动 大数据 广东移动 一直以来致力于利用先进的技术和创新的思维来提升服务质量和用户体验。随着时代的发展和科技的进步,大数据逐渐成为...

    2024-11-04
  • 浙江移动 大数据
    浙江移动 大数据

    一、浙江移动 大数据 在当今数字化时代,大数据已成为企业发展和竞争的关键。浙江移动作为中国领先的通讯运营商之一,也在积极探索如何利用大数据...

    2024-10-28
  • 怎么把程序源码与UI结合?
    怎么把程序源码与UI结合?

    一、怎么把程序源码与UI结合? 把程序源码与UI结合的方法: 首先为您的测试资产设置和组织文件夹结构。您需要将不同的资产彼此分开,例如测试、名称...

    2024-10-28
  • 移动大数据平台金点子
    移动大数据平台金点子

    一、移动大数据平台金点子 移动大数据平台金点子的重要性 在当今信息爆炸的时代,大数据已经成为各行各业的核心竞争力。随着移动互联网的不断发展...

    2024-10-24