数据科学与大数据技术学什么?

2024-06-21 15:35 来源:能进科技网

一、数据科学与大数据技术学什么?

数据科学与大数据技术涵盖了以下几个方面的学习:

1. 数据处理与存储:学习数据存储和处理的各种技术,如关系数据库、非关系数据库、数据仓库、数据挖掘等。

2. 数据分析与建模:学习统计学、机器学习、模型构建等方法来理解数据集,并产生对数据的新认知。

3. 数据可视化:学习如何使用可视化工具来展示和解释数据。

4. 大数据技术:学习Hadoop、Spark、NoSQL等大数据技术和平台,并学习如何使用这些技术高效处理海量数据。

5. 商业分析:学习如何运用数据科学和大数据技术来解决业务问题,进行商业分析和决策。

总的来说,数据科学与大数据技术的核心是通过数据分析和大数据技术来挖掘数据价值,为业务提供决策支持。

二、什么是数字科学大数据技术?

数据科学与大数据技术专业是一门普通高等学校本科专业。

面向大数据应用的数学、统计、计算机等学科基础知识,数据建模、高效分析与处理,统计学推断的基本理论、基本方法和基本技能。了解自然科学和社会科学等应用领域中的大数据,具有较强的专业能力和良好的外语运用能力,能胜任数据分析与挖掘算法研究和大数据系统开发的研究型和技术型人才。

三、如何看待数据科学与大数据技术专业?

1. 发展前景:随着数字化和信息化的加速发展,数据成为了各行各业中不可或缺的资源。数据科学与大数据技术专业具有广阔的发展前景,它们涉及数据收集、处理、分析和应用等方面,可以帮助企业和组织发现商业机会、优化运营并制定决策。

2. 技术需求:随着大数据技术的快速发展和应用,对掌握相关技术的人才需求也日益增加。数据科学与大数据技术专业培养的学生具备数据分析、数据挖掘、机器学习、人工智能等方面的技能,能够满足相关企业和组织对于数据处理和应用的需求。

3. 跨学科特性:数据科学与大数据技术专业涉及到统计学、计算机科学、数学建模和商业应用等多个学科的知识,需要具备跨学科的综合能力。学生需要具备良好的逻辑思维、分析能力和问题解决能力,并且具备一定的编程和数据处理技能。

4. 挑战与竞争:数据科学与大数据技术专业是一个充满挑战和竞争的领域。技术的快速变化和数据处理技能的需求不断提高,对学生来说,需要不断学习和更新自己的知识和技术,保持创新思维和适应能力。

四、数据科学与大数据与统计学的区别?

1、区别一:培养目标不同。

(1)统计学

「统计学」主要通过利用大量数据进行量化分析,总结出一些经验规律,做出后期推断和预测,从而为相关决策提供依据和参考,其不仅仅是统计数字,还包含了调查、收集、分析、预测等,应用范围十分广泛。

(2)数据科学与大数据技术

「数据科学」综合运用统计学、计算机科学、应用数学等学科提供的现代数据分析工具和方法从数据中自动寻找规律或者有价值的信息。

具体来说,它是运用概率统计、并行与分布式计算、人工智能、机器学习等综合知识研究来自工业、生物医疗、金融证券和社交网络等众多领域的较大规模或结构复杂数据集的高效采集、高效存储、高效管理、精确建模、深入分析和精准预测的新兴交叉学科。

2、区别二:课程设置

(1)统计学

一般来说,统计学专业的核心课程无外乎三个方面——数学、计算机和经济。若对该专业的核心课程进行分类,可大致归结为以下3种∶

数学相关的核心课程:数学分析、几何学、常微分方程、概率论、抽象代数、复变函数等;计算机相关的核心课程:计算机应用基础、程序设计语言、数据库管理系统、计算机网络、数据结构与算法、深度学习等;

经济相关的核心课程∶计量经济学、经济预测与决策、金融数学、证券投资与统计分析等。

(2)数据科学与大数据技术

二若对数据科学与大数据技术专业的核心课程进行分类,可大致归结为以下3种∶

·数学相关的核心课程∶概率论、数理统计,应用多元统计分析,实变函数9,应用回归分析,贝叶斯理论与算法,统计计算等;

计算机相关的核心课程:程序设计实习,数据结构与算法,分布与并行计算,算法设计与分析,数据库概论等;

数学&计算机结合的核心课程:应用时间序列分析,自然语言处理导论,人工智能,深度学习等。

3、区别三:就业方向

(1)统计学

根据统计学就业方向侧重点的不同,大致可以分为三大类∶金融类、算法类、数据分析类。

1.金融类

相关职位∶量化投资、风险控制、股票分析师、市场研究员等

量化投资∶负责设计、编写和测试量化模型,搭建和优化数据系统和策略回测平台,对量化策略进行逻辑论证、回测评价、风险分析及产品化建议;负责量化FOF产品组合的研究、尽调、业绩分析、筛选、监控等。

风险控制:根据社区零售业务制定风控部署全年规划,对行业风险动态进行监控和快速调整风控策略;深刻理解社区零售业务链条,对社区零售业务链条的风险做风险评估和风险判断;结合风控核心指标与业务核心指标,定量分析 处理问题,沉淀通用解决方案(包含营销安全、价格风险),对风控策略和管控流程进行优化等。

·股票分析师∶负责行业信息和资料的收集、汇总、分析和研究,日常研究报告的撰写;通过公司平台服务客户,为客户提供行情、投资策略咨询服务;对行业和公司基本面的有深度的研究,能够挖掘有价值的投资机会,并形成投资分析报告等。

市场研究员∶ 负责产品营销策略评估、推广效果评估的用研工作。洞察用户转化的关键, 为单品营销优化提供输入;针对竞品开展增长案例专项研究,识别增长的新机会与手段,并推动在业务侧落地等。

2.算法类

相关职位∶数据挖掘工程师、机器学习算法工程师等

数据挖掘工程师∶负责用户增长、个性化运营、推荐系统相关的数据挖掘工作,包括但不限于人群挖掘、画像建设、用户模型等;梳理、提炼、整合能解决业务问题的可复用数据挖掘方案,沉淀形成数据中台的挖掘工具,持续提高挖掘效率。

机器学习算法工程师:负责构建用户画像,分析用户兴趣偏好负责核心业务的数据/算法工作,优化协调过滤算法,挖掘用户社交关系与潜在社群;负责相关业务的数据分析及增长挖掘工作等。

3.数据分析类

相关职位∶数据分析师、运营分析师、商业分析师等。

数据分析师∶面向特定行业的业务问题/业务目标,建立数据基本指标统计体系描述业务,通过数据分析为上级领导提供决策依据,实现数据的商业意义。

运营分析师∶负责用户洞察,建立统一的用户分层和生命周期模型,通过数据挖掘多维用户特征标签,发现商业机遇并推动职能团队落地运营策略;负责市场竞争分析,具有较强的市场分析和洞察能力,基于外部渠道样本数据采集,建立竞对分析模式,提供市场控比趋势和业务策略建议等。

商业分析师∶深入理解业务逻辑前提下,迭代业务核心指标体系,并推动线上化、产品化;结合内外部信息,输出有深度洞察力的专题分析,持续迭代业务决策层的业务认知,为策略制定奠定坚实基础。

相关文章

  • 重庆移动 大数据
    重庆移动 大数据

    一、重庆移动 大数据 重庆移动 是中国移动通信集团公司的一个分支机构,致力于在通信行业领域不断创新发展。大数据作为信息时代的核心资源之一,已...

    2024-11-04
  • 广东 移动 大数据
    广东 移动 大数据

    一、广东 移动 大数据 广东移动 一直以来致力于利用先进的技术和创新的思维来提升服务质量和用户体验。随着时代的发展和科技的进步,大数据逐渐成为...

    2024-11-04
  • 浙江移动 大数据
    浙江移动 大数据

    一、浙江移动 大数据 在当今数字化时代,大数据已成为企业发展和竞争的关键。浙江移动作为中国领先的通讯运营商之一,也在积极探索如何利用大数据...

    2024-10-28
  • 怎么把程序源码与UI结合?
    怎么把程序源码与UI结合?

    一、怎么把程序源码与UI结合? 把程序源码与UI结合的方法: 首先为您的测试资产设置和组织文件夹结构。您需要将不同的资产彼此分开,例如测试、名称...

    2024-10-28
  • 移动大数据平台金点子
    移动大数据平台金点子

    一、移动大数据平台金点子 移动大数据平台金点子的重要性 在当今信息爆炸的时代,大数据已经成为各行各业的核心竞争力。随着移动互联网的不断发展...

    2024-10-24