高斯分布在机器学习的应用?
一、高斯分布在机器学习的应用?
现在的应用包括监督学习,非监督学习,主动学习,多任务学习,强化学习,时间序列建模等等
二、brain协议原理?
Brain采用的是单样本学习,让机器通过无监督学习训练下的大型模型对语义的深度理解以及语义代表(representation)的建立,只看极少量的数据,就可以触类旁通地学习到深度关系和新的概念。
BRAIN协议是横河智能仪表的协议,在横河变送器、涡街、电磁流量计、等仪表都有这个协议,在仪表的输出信号栏上的代码为“D”。和BRAIN协议配套使用的手持智能终端是BT200,使用BT200在BRAIN协议的支持下可对变送器设定、更改、显示、打印参数,调零等等。
三、机器学习方法属于监督学习的是?
电脑试题,电脑对答等互动性强的。
四、ai技术员的基础知识?
1、做算法
1.1 日常工作
所有人都想做算法,那么,说到底,在做算法到底是干什么?真正的算法工程师最基本的日常工作其实是:读论文&实现之——确认最新论文中的阐述是否真实可重现,进一步确认是否可应用于本企业的产品,进而将其应用到实践中提升产品质量。
1.2 必备能力
既然日常工作首先是读别人论文。那么,必不可少,作为算法工程师得具备快速、大量阅读英语论文的能力。在计算机科学,尤其是人工智能、机器学习、深度学习这几个当今世界最热门的领域里,大家都在争分夺秒地抢占制高点,根本不能容忍耽搁时间。如果要做算法,平均而言,大致要保持每周读一篇最新论文的频率。
1.3 理论联系实际,将学术论述与产品、业务结合的能力
一般来说,在大企业里做到真正的算法工程师/科学家,也就不需要自己去动手开发产品了。但做 demo/prototype 还是不能避免的。算法工程师,可不是用别人写好的工具填几个参数去运行就可以的,需要负责实际业务问题到数学模型的抽象,并能够将他人最新成果应用到业务数据上去。
说得更通俗一点,就算是用别人写的工具或框架,做算法的,也得是i)第一拨、最前沿那批试用者,或者ii)工具最新玩法的发明者。
2. 做工程
2.1 日常工作
相对于算法的创新和尖端,做工程要平实得多。这一角色比较有代表性的一种岗位就是:机器学习工程师(或戏称调参工程师)——他们使用别人开发的框架和工具,运行已有算法,训练业务数据,获得工作模型。
做工程也得读论文,不过和做算法不同,做工程读论文的一般目的不是尝试最新方法,而是用已知有效的方法来解决实际问题。
2.2 做工程,「机器学习」学到多深够用
当然,既然是有领域的程序员,在专业上达到一定深度也是必要的。虽然做工程一般要使用现成技术框架,但并不是说,直接把算法当黑盒用就可以做一名合格的“调参”工程师了。把算法当黑盒用的问题在于:黑盒能够解决问题的时候,使用方便,而一旦不能解决问题,或者对质量有所要求,就会感觉无所适从。
作为程序员、工程人员,想用机器学习算法解决实际问题,就得对算法有一定程度的掌握,此外对于数据处理和模型验证,也需具备相应知识。
3. 做数据
做数据并非数据的清洗和处理——大家可以看到做工程的岗位,有一部分工作内容就是ETL和处理数据。此处说的做数据是指数据标注。
3.1 标注数据的重要性
虽然机器学习中有无监督学习,但在实践领域被证明有直接作用的,基本上还都是有监督模型。近年来,深度学习在很多应用上取得了巨大的成功,而深度学习的成功,无论是图像、语音、NLP、自动翻译还是AlphaGo,恰恰依赖于海量的标注数据。
AI技术员需要学什么?无论是做ML还是DL的工程师,都共同确认一个事实:现阶段而言,数据远比算法重要。