python人工智能 框架
一、python人工智能 框架
在当今数字化时代,python人工智能技术正日益成为各行业的关注焦点。随着人工智能技术的不断发展和普及,越来越多的企业和开发者开始关注并应用这一领域的工具和框架。
人工智能技术的应用领域
人工智能技术已经深入到各行各业,包括金融、医疗、零售、制造业等领域。通过python人工智能框架,开发者可以创建各种智能应用,实现自动化、预测性分析、图像识别、自然语言处理等功能。
常用的人工智能框架
在python人工智能领域,有许多优秀的框架可供开发者选择使用,其中最流行和常用的包括 TensorFlow、PyTorch、Keras、Scikit-learn 等。
TensorFlow
TensorFlow是由Google开发的开源人工智能框架,广泛应用于深度学习领域。它提供了丰富的工具和库,让开发者能够轻松构建和训练复杂的神经网络模型。
PyTorch
PyTorch是另一款备受欢迎的人工智能框架,由Facebook开发并维护。与TensorFlow相比,PyTorch更加灵活,易于使用,深受研究人员和学术界的青睐。
Keras
Keras是建立在TensorFlow和Theano之上的高级神经网络API,简单而高效。它被认为是入门深度学习的最佳选择,适用于快速原型设计。
Scikit-learn
Scikit-learn是一个功能强大且简单易用的机器学习库,提供了各种机器学习算法和工具,适用于广泛的应用场景。
结语
在python人工智能领域,选择合适的框架对于开发者来说至关重要。无论是深度学习还是机器学习,在人工智能技术的应用中,框架扮演着至关重要的角色,影响着技术的发展和应用的效果。
二、python orm框架比较?
ORM概念
ORM(Object Ralational Mapping,对象关系映射)用来把对象模型表示的对象映射到基于S Q L 的关系模型数据库结构中去。这样,我们在具体的操作实体对象的时候,就不需要再去和复杂的 SQ L 语句打交道,只需简单的操作实体对象的属性和方法。O R M 技术是在对象和关系之间提供了一条桥梁,前台的对象型数据和数据库中的关系型的数据通过这个桥梁来相互转化 。
Python中常用的ORM
SQLObject
SQLObject是一种流行的对象关系管理器,用于为数据库提供对象接口,其中表为类,行为实例,列为属性。
SQLObject包含一个基于Python对象的查询语言,使SQL更抽象,并为应用程序提供了大量的数据库独立性。
优点:
采用了易懂的ActiveRecord 模式
一个相对较小的代码库
缺点:
方法和类的命名遵循了Java 的小驼峰风格
不支持数据库session隔离工作单元
Storm
Storm 是一个介于 单个或多个数据库与Python之间 映射对象的 Python ORM 。为了支持动态存储和取回对象信息,它允许开发者构建跨数据表的复杂查询。Stom中 table class 不需要是框架特定基类 的子类 。每个table class是 的sqlobject.SQLObject 的子类。
优点:
清爽轻量的API,短学习曲线和长期可维护性
不需要特殊的类构造函数,也没有必要的基类
缺点:
迫使程序员手工写表格创建的DDL语句,而不是从模型类自动派生
Storm的贡献者必须把他们的贡献的版权给Canonical公司
Django's ORM
因为Django的ORM 是紧嵌到web框架的,所以就算可以也不推荐,在一个独立的非Django的Python项目中使用它的ORM。
Django,一个最流行的Python web框架, 有它独有的 ORM。 相比 SQLAlchemy, Django 的 ORM 更吻合于直接操作SQL对象,操作暴露了简单直接映射数据表和Python类的SQL对象 。
优点:
易用,学习曲线短
和Django紧密集合,用Django时使用约定俗成的方法去操作数据库
缺点:
不好处理复杂的查询,强制开发者回到原生SQL
紧密和Django集成,使得在Django环境外很难使用
peewee:
优点:
Django式的API,使其易用
轻量实现,很容易和任意web框架集成
缺点:
不支持自动化 schema 迁移
多对多查询写起来不直观
SQLAlchemy:
SQLAlchemy 采用了数据映射模式,其工作单元 主要使得 有必要限制所有的数据库操作代码到一个特定的数据库session,在该session中控制每个对象的生命周期 。
优点:
企业级 API,使得代码有健壮性和适应性
灵活的设计,使得能轻松写复杂查询
缺点:
工作单元概念不常见
重量级 API,导致长学习曲线
总结
相比其他的ORM, SQLAlchemy 意味着,无论你何时写SQLAlchemy代码, 都专注于工作单元的前沿概念 。DB Session 的概念可能最初很难理解和正确使用,但是后来你会欣赏这额外的复杂性,这让意外的时序提交相关的数据库bug减少到0。在SQLAlchemy中处理多数据库是棘手的, 因为每个DB session 都限定了一个数据库连接。但是,这种类型的限制实际上是好事, 因为这样强制你绞尽脑汁去想在多个数据库之间的交互, 从而使得数据库交互代码很容易调试
三、python框架搭建方法?
Python框架搭建方法有以下7个步骤:
创建项目:首先打开pycharm,点击Create New Project,创建一个新的项目。在选项里面有一个Flask的,然后就是项目名(建议不要用中文,因为中文容易报错),然后就是选择环境,注意要选择有Python环境的,如果下拉框里没有,就要在它右边设置键手动添加。点击create进行创建。
创建虚拟环境:使用命令行创建虚拟环境。
安装依赖:在项目文件夹中,使用命令行安装项目所需的依赖包。
配置数据库:在项目文件中,配置数据库连接信息。
编写代码:根据需求编写代码。
运行项目:使用命令行运行项目。
调试项目:在运行过程中,对项目进行调试。
四、python web框架排行?
1 Django
Django是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,模板T和视图V。它最初是被开发来用于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的,即是CMS(内容管理系统)软件。Django与其他框架比较,它有个比较独特的特性,支持orm,将数据库的操作封装成为python,对于需要适用多种数据库的应用来说是个比较好的特性。不过这种特性,已经有其他库完成了,sqlalchemy.
2 Flask
Flask是一个使用 Python 编写的轻量级 Web 应用框架。其 WSGI 工具箱采用 Werkzeug ,模板引擎则使用 Jinja2 。Flask使用 BSD 授权。
Flask也被称为 “microframework” ,因为它使用简单的核心,用 extension 增加其他功能。Flask没有默认使用的数据库、窗体验证工具。
Flask 很轻,花很少的成本就能够开发一个简单的网站。非常适合初学者学习。Flask 框架学会以后,可以考虑学习插件的使用。例如使用 WTForm + Flask-WTForm 来验证表单数据,用 SQLAlchemy + Flask-SQLAlchemy 来对你的数据库进行控制。
3 Tornado
Tornado是一种 Web 服务器软件的开源版本。Tornado 和现在的主流 Web 服务器框架(包括大多数 Python 的框架)有着明显的区别:它是非阻塞式服务器,而且速度相当快。
得利于其 非阻塞的方式和对epoll的运用,Tornado 每秒可以处理数以千计的连接,因此 Tornado 是实时 Web 服务的一个 理想框架。不过现在与众多的框架比较,Tornado已经被抛在了后面,Django已经超过了它,更不说其他框架了,只能说Tornado使用纯python开发的性能还是不能与其他框架借助于cython开发的性能相比。
4 web.py
web.py 是一个Python 的web 框架,它简单而且功能强大。web.py 是公开的,无论用于什么用途都是没有限制的。而且相当的小巧,应当归属于轻量级的web 框架。但这并不影响web.py 的强大,而且使用起来很简单、很直接。在实际应用上,web.py 更多的是学术上的价值,因为你可以看到更多web 应用的底层,这在当今“抽象得很好”的web 框架上是学不到的 :)
5 Aiohttp
高性能异步web框架,既有客户端的也有服务端的,还支持web-socket
6 Sanic
与flask类似,并支持异步
7 Vibora
旨在成为最快的python web框架。vibora的高性能依赖于 cython实现的uvloop异步框架及cython实现的http_parser, 再加上一些cython构建的web组件,比如 模板,user-route等。目前还处于测试阶段。
8 Bottle
Bottle是一个简单高效的遵循WSGI的微型python Web框架。说微型,是因为它只有一个文件,除Python标准库外,它不依赖于任何第三方模块。
9 Falcon
Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。
10 weppy
性能优于flask的一个全栈web框架
五、Python几种主流框架比较?
从GitHub中整理出的15个最受欢迎的Python开源框架。这些框架包括事件I/O,OLAP,Web开发,高性能网络通信,测试,爬虫等。
Django: Python Web应用开发框架
Django 应该是最出名的Python框架,GAE甚至Erlang都有框架受它影响。Django是走大而全的方向,它最出名的是其全自动化的管理后台:只需要使用起ORM,做简单的对象定义,它就能自动生成数据库结构、以及全功能的管理后台。
Diesel:基于Greenlet的事件I/O框架
Diesel提供一个整洁的API来编写网络客户端和服务器。支持TCP和UDP。
Flask:一个用Python编写的轻量级Web应用框架
Flask是一个使用Python编写的轻量级Web应用框架。基于Werkzeug WSGI工具箱和Jinja2
模板引擎。Flask也被称为“microframework”,因为它使用简单的核心,用extension增加其他功能。Flask没有默认使用的数
据库、窗体验证工具。
Cubes:轻量级Python OLAP框架
Cubes是一个轻量级Python框架,包含OLAP、多维数据分析和浏览聚合数据(aggregated data)等工具。
Kartograph.py
:创造矢量地图的轻量级Python框架Kartograph是一个Python库,用来为ESRI生成SVG地图。
Kartograph.py
目前仍处于beta阶段,你可以在virtualenv环境下来测试。Pulsar:Python的事件驱动并发框架
Pulsar是一个事件驱动的并发框架,有了pulsar,你可以写出在不同进程或线程中运行一个或多个活动的异步服务器。
Web2py:全栈式Web框架
Web2py是一个为Python语言提供的全功能Web应用框架,旨在敏捷快速的开发Web应用,具有快速、安全以及可移植的数据库驱动的应用,兼容Google App Engine。
Falcon:构建云API和网络应用后端的高性能Python框架
Falcon是一个构建云API的高性能Python框架,它鼓励使用REST架构风格,尽可能以最少的力气做最多的事情。
Dpark:Python版的Spark
DPark是Spark的Python克隆,是一个Python实现的分布式计算框架,可以非常方便地实现大规模数据处理和迭代计算。DPark由豆瓣实现,目前豆瓣内部的绝大多数数据分析都使用DPark完成,正日趋完善。
Buildbot:基于Python的持续集成测试框架
Buildbot是一个开源框架,可以自动化软件构建、测试和发布等过程。每当代码有改变,服务器要求不同平台上的客户端立即进行代码构建和测试,收集并报告不同平台的构建和测试结果。
Zerorpc:基于ZeroMQ的高性能分布式RPC框架
Zerorpc是一个基于ZeroMQ和MessagePack开发的远程过程调用协议(RPC)实现。和 Zerorpc 一起使用的 Service API 被称为 zeroservice。Zerorpc 可以通过编程或命令行方式调用。
Bottle: 微型Python Web框架
Bottle是一个简单高效的遵循WSGI的微型python Web框架。说微型,是因为它只有一个文件,除Python标准库外,它不依赖于任何第三方模块。
Tornado:异步非阻塞IO的Python Web框架
Tornado的全称是Torado Web Server,从名字上看就可知道它可以用作Web服务器,但同时它也是一个Python Web的开发框架。最初是在FriendFeed公司的网站上使用,FaceBook收购了之后便开源了出来。
webpy: 轻量级的Python Web框架
webpy的设计理念力求精简(Keep it simple and powerful),源码很简短,只提供一个框架所必须的东西,不依赖大量的第三方模块,它没有URL路由、没有模板也没有数据库的访问。
Scrapy:Python的爬虫框架
Scrapy是一个使用Python编写的,轻量级的,简单轻巧,并且使用起来非常的方便。
六、python基础文档框架大纲?
在sheet2的J列2行输入“ =LOOKUP(I:I,SHEET1!B:B,SHEET1!D:D) ”
七、python三大框架对比?
python三大框架的对比:
Django:Python 界最全能的 web 开发框架,battery-include 各种功能完备,可维护性和开发速度一级棒。常有人说 Django 慢,其实主要慢在 Django ORM 与数据库的交互上,所以是否选用 Django,取决于项目对数据库交互的要求以及各种优化。而对于 Django 的同步特性导致吞吐量小的问题,其实可以通过 Celery 等解决,倒不是一个根本问题。Django 的项目代表:Instagram,Guardian。
Tornado:天生异步,性能强悍是 Tornado 的名片,然而 Tornado 相比 Django 是较为原始的框架,诸多内容需要自己去处理。当然,随着项目越来越大,框架能够提供的功能占比越来越小,更多的内容需要团队自己去实现,而大项目往往需要性能的保证,这时候 Tornado 就是比较好的选择。Tornado项目代表:知乎。
Flask:微框架的典范,号称 Python 代码写得最好的项目之一。Flask 的灵活性,也是双刃剑:能用好 Flask 的,可以做成 Pinterest,用不好就是灾难(显然对任何框架都是这样)。Flask 虽然是微框架,但是也可以做成规模化的 Flask。加上 Flask 可以自由选择自己的数据库交互组件(通常是 Flask-SQLAlchemy),而且加上 celery +redis 等异步特性以后,Flask 的性能相对 Tornado 也不逞多让,也许Flask 的灵活性可能是某些团队更需要的。
八、python ui框架哪个最好用?
初学者可以使用python自带的Tk,优点是不用安装其他库,使用方便,缺点是样式少,功能简单。
进阶点可以使用wxpython第三方库,优点样式丰富,功能齐全,缺点就是需要额安装,上手有难度。
再高级点就是Pyqt,这个比较专业的设计框架,功能十分强大,但是对初学者不友好,安装也复杂,打包时候容易出现各种问题。
九、Python3.0有多少框架?
1. Django, 是一个开放源代码的Web应用框架,由Python写成。采用了MVT的软件设计模式,即模型(Model),视图(View)和模板(Template), 鼓励快速开发和简洁实用的设计。它由经验丰富的开发人员构建,它解决了Web开发的大部分麻烦,因此您可以专注于编写应用程序而无需重新发明轮子。
2. Flask, 是一个轻量级的WSGI Web应用程序框架。它旨在使快速入门变得容易,并具有扩展到复杂应用程序的能力。它最初是围绕Werkzeug 和Jinja的简单包装,并已成为最受欢迎的Python Web应用程序框架之一.Flask没有默认使用的数据库、窗体验证工具。然而,Flask保留了扩增的弹性,可以用Flask-extension加入这些功能:ORM、窗体验证工具、文件上传、各种开放式身份验证技术。
3. Web2py, 最初被设计为一种教学工具,着重于易于使用和部署。因此,它没有任何项目级配置文件。web2py的设计灵感来自Ruby on Rails和Django框架。像这些框架一样,web2py专注于快速开发,相对于配置方法更倾向于约定俗成,并遵循模型-视图-控制器(MVC)的架构模式。
4. Sanic, 异步框架Sanic建立在uvloop之上,是一个简单且开源的Python框架,专门开发用于通过异步请求处理提供快速的HTTP响应。因此,它是Python的异步框架。Sanic支持异步请求处理程序,使其与Python 3.5的async / await函数兼容。它不仅可以提高速度,还可以提供非阻塞功能。在一个流程和100个连接的基准测试中,Sanic能够在一秒钟内处理多达33,342个请求。
5. Tornado, 异步框架Tornado是一个开源Python框架和一个异步网络库。除了解决C10k问题(这仅意味着在任何给定时间处理10k连接)之外,异步框架还使用非阻塞网络I / O。Python框架最初是为一家名为FriendFeed的公司开发的,该公司于2009年被Facebook收购。Tornado是构建要求高性能和数千用户的应用程序的理想工具。
十、jquery是python的开发框架?
jquery不是python的开发框架。
jquery是前端开发框架,是一组javascript的组件框架。
python是解释型的开发语言,对标的是java开发语言