人工智能的简单介绍50字?

2024-09-06 10:25 来源:能进科技网

一、人工智能的简单介绍50字?

人工智能(Artificial Intelligence,缩写为AI)亦称机器智能,指由人制造出来的机器所表现出来的智能。对人工智能的定义大多可划分为四类,即机器“像人一样思考、像人一样行动、理性地思考、理性地行动”。

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。它是计算机科学的一个分支,无论在理论和实践上都已自成系统。它是研究使计算机模拟人的思维过程和智能行为(学习、推理、思考、规划等)的学科,制造类似于人脑的智能计算机,使计算机实现更高层次的应用。

二、简单介绍一下人工智能的起源、发展和未来趋势。?

引言

人工智能到底是什么?通常来说,人工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。但是事实上,给一门学科界定范围是很难的,尤其对于一门正在快速发展的学科更是难上加难。即使是数学这样成熟的学科,有时我们也很难梳理一个明确的边界。而像人工智能这样不断扩展边界的学科,更是很难做出一个相对准确的判断。对于人工智能的应用已经扩展到各个领域,机械、电子、经济甚至哲学,都有所设计。它的实用性极强,是一种极具代表性的多元跨专业学科。

第一章:起步期-20世纪50年代及以前

人工智能的起源可以追溯到以及阿兰·图灵(Alan Turing)1936年发表的《论可计算数及其在判定问题中的应用》。后来随着克劳德·香农(Claude Shannon)在 1950 年提出计算机博弈。以及艾伦·麦席森·图灵(Alan Mathison Turing)在 1954 年提出“图灵测试”,让机器产生智能这一想法开始进入人们的视野。

1956年达特茅斯学院召开了一个研讨会,John McCarthy, Marvin Minsky, Nathaniel Rochester, 以及Claude Shannon等人正式提出“人工智能”这一概念。算法方面,1957年,Rosenblatt Frank提出感知机算法Perceptron,这不仅开启了机器学习的浪潮,也成为后来神经网络的基础(当然追溯的话,神经网络研究得追溯到1943年神经生理学家麦卡洛克(W. S. McCulloch)和皮茨(W. Pitts)的神经元模型)。

1.1 计算机象棋博弈(Programming a computer for playing chess)

克劳德·艾尔伍德·香农(Claude Elwood Shannon,1916年4月30日—2001年2月24日)是美国数学家、信息论的创始人。

香农是世界上首批提出“计算机能够和人类进行国际象棋对弈”的科学家之一。1950年,他为《科学美国人》撰写过一篇文章,阐述了“实现人机博弈的方法”;他设计的国际象棋程序,发表在同年《哲学杂志》上(计算机下棋程序 Programming a Computer for Playing Chess)。

香农把棋盘定义为二维数组,每个棋子都有一个对应的子程序计算棋子所有可能的走法,最后有个评估函数(evaluation function)。传统的棋局都把下棋过程分为三个阶段,开局、中局和残局,不同阶段需要不同的技术手段。而此论文也引用了冯·诺依曼的《博弈论》和维纳的《控制论》。

这篇论文开启了计算机下棋的理论研究,其主要思路在多年后的“深蓝”及AlphaGo中仍能看到。1956年,在洛斯阿拉莫斯的MANIAC计算机上,他又展示了国际象棋的下棋程序。

1.2 图灵测试(Turing Test)

艾伦·麦席森·图灵(英语:Alan Mathison Turing,1912年6月23日—1954年6月7日),英国数学家、逻辑学家,被称为计算机科学之父,人工智能之父。

1954年,图灵测试(The Turing test)由图灵发明,指测试者与被测试者(一个人和一台机器)隔开的情况下,通过一些装置(如键盘)向被测试者随意提问。进行多次测试后,如果机器让平均每个参与者做出超过30%的误判,那么这台机器就通过了测试,并被认为具有人类智能。图灵测试一词来源于计算机科学和密码学的先驱艾伦·麦席森·图灵写于1950年的一篇论文《计算机器与智能》,其中30%是图灵对2000年时的机器思考能力的一个预测,目前我们已远远落后于这个预测。

他实际提出了一种测试机器是不是具备人类智能的方法。即假设有一台电脑,其运算速度非常快、记忆容量和逻辑单元的数目也超过了人脑,而且还为这台电脑编写了许多智能化的程序,并提供了合适种类的大量数据,那么,是否就能说这台机器具有思维能力?

图灵肯定机器可以思维的,他还对智能问题从行为主义的角度给出了定义,由此提出一假想:即一个人在不接触对方的情况下,通过一种特殊的方式,和对方进行一系列的问答,如果在相当长时间内,他无法根据这些问题判断对方是人还是计算机,那么,就可以认为这个计算机具有同人相当的智力,即这台计算机是能思维的。这就是著名的“图灵测试”(Turing Testing)。当时全世界只有几台电脑,其他几乎所有计算机根本无法通过这一测试。

要分辨一个想法是“自创”的思想还是精心设计的“模仿”是非常难的,任何自创思想的证据都可以被否决。图灵试图解决长久以来关于如何定义思考的哲学争论,他提出一个虽然主观但可操作的标准:如果一台电脑表现(act)、反应(react)和互相作用(interact)都和有意识的个体一样,那么它就应该被认为是有意识的。

为消除人类心中的偏见,图灵设计了一种“模仿游戏”即图灵测试:远处的人类测试者在一段规定的时间内,根据两个实体对他提出的各种问题的反应来判断是人类还是电脑。通过一系列这样的测试,从电脑被误判断为人的几率就可以测出电脑智能的成功程度。

图灵预言,在20世纪末,一定会有电脑通过“图灵测试”。2014年6月7日在英国皇家学会举行的“2014图灵测试”大会上,举办方英国雷丁大学发布新闻稿,宣称俄罗斯人弗拉基米尔·维西罗夫(Vladimir Veselov)创立的人工智能软件尤金·古斯特曼(Eugene Goostman)通过了图灵测试。虽然“尤金”软件还远不能“思考”,但也是人工智能乃至于计算机史上的一个标志性事件。

1.3达特茅斯学院人工智能夏季研讨会(Dartmouth Summer Research Conference on Artificial Intelligence)

1956年夏季,年轻的明斯基与数学家和计算机专家麦卡锡(John MeCarthy,1927—2011)等10人在达特茅斯学院(Dartmouth College办了一个长达2个月的人工智能夏季研讨会,认真热烈地讨论用机器模拟人类智能的问题。会上正式使用了人工智能(artificial intelligence,即 AI)这一术语。

这是人类历史上第一次人工智能研讨,标志着人工智能学科的诞生,具有十分重要的历史意义,为国际人工智能的发展做出重要的开创性贡献。会议持续了一个月,基本上以大范围的集思广益为主。这催生了后来人所共知的人工智能革命。1956年也因此成为了人工智能元年。会议的主要议题包括自动计算机、如何为计算机编程使其能够使用语言、神经网络、计算规模理论、自我改造、抽象、随机性与创造性等。

1.4感知机(Perceptrons)

1957年,弗兰克·罗森布拉特(Frank Rosenblatt)在一台IBM-704计算机上模拟实现了一种他发明的叫做“感知机”(Perceptron)的神经网络模型。罗森布拉特1962年出了本书:《神经动力学原理:感知机和大脑机制的理论》(Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms),基于MCP神经元提出了第一个感知器学习算法,同时它还提出了一个自学习算法,此算法可以通过对输入信号和输出信号的学习,自动获取到权重系数,通过输入信号与权重系数的乘积来判断神经元是否被激活(产生输出信号)。

感知机需要几个二进制输入, X1,X2,…Xn X1,X2,…Xn ,并产生一个二进制输出:

上图所示的 Perceptron Perceptron 有三个输入,但是实际的输入可能远多于三个或是少与三个。Rosenblatt Rosenblatt 提出了一个简单的规则来计算输出,他首先引入了 weights weights(权重)概念, ω1,ω2,... ω1,ω2,...。以实数权重 ω ω表示输入到输出的重要性,神经元的输出 0 或 1 ,这取决于加权因子(即 weights weights)小于或大于某一阈值。就像权重,阈值为一个实数,是一个神经元的参数。

公式表示为:

这就是我们熟知的激活函数的最初形态, 0 0 状态代表抑制, 1 1 状态代表激活。这简单的数学公式帮助我们了解 perceptrons perceptrons 是如何工作的。姑且我们把它理解为: 它是一种通过权衡输入信息的重要性来决定你的输出。


2023年Openai的ChatGPT 4.0火爆出圈,这么好的东西却不对中国用户(包括港澳台)开放。我们希望通过自己的内容、技术和服务,些许的抹平差异,让中国用户,也能更方便、更便宜的了解和使用到全球最强大的对话式AI大模型。我们可以帮你订阅ChatGPT Plus,支付方式稳定、安全。所有ChatGPT账号,一人一号独享。详情请扫码关注老师微信了解。

三、人工智能管家介绍?

智能管家(Intelligent Steward 简称“智管”)即通过AI技术提升商务管理和生活品质的私人智能科技助理。

四、人工智能岛介绍?

张江人工智能岛(AIsland)位于张江科学城中区,占地面积6.6万平方米,是由张江集团负责开发运营的人工智能产业生态聚集地。是国内首个“5G+AI”全场景应用示范园区;上海市首批“AI+园区”试点应用场景;上海(浦东新区)人工智能创新应用先导区的产业标杆。目前,岛上有21幢建筑,31个智慧未来的应用场景,已实现5G全网络覆盖。

五、同花顺人工智能介绍?

同花顺人工智能是指同花顺股票软件中的一项人工智能功能。该功能可以通过收集和处理大量的市场数据,并应用自然语言处理、机器学习等先进技术,为用户提供股票分析、资讯、预测和投资建议等多种功能。

具体而言,同花顺人工智能主要包括以下几个方面的能力:

1. 基本面分析:通过对公司财报、资产负债表、现金流量表等数据进行分析,给出股票的基本面评级和价值分析。

2. 聚合资讯:通过自然语言处理技术和智能算法,从多个渠道汇集资讯信息,并自动分类、筛选、摘要和推荐,形成更加准确和全面的资讯服务。

3. 投资策略:根据市场行情和历史数据等信息,利用机器学习算法预测股票未来的走势,并提供投资建议、分析和优化策略。

4. 量化交易:利用同花顺人工智能的量化交易工具,自动执行交易策略,从而实现更高效的交易和投资。

总的来说,同花顺人工智能是一项非常先进和高效的股票分析和投资工具,可以帮助用户更加科学和准确地进行股票投资,并在市场竞争中获得更大的优势。

六、人工智能超人介绍?

人工智能超人,不仅力大无穷,而且聪明绝伦,更成为人工智能领域的专家。

Tiger还设计了一个“甲虫智脑”芯片,杨歌将芯片安装到自己的后脖颈上,变得脾气暴躁、冷酷无情,而且破坏力巨大,事情开始失控起来……

七、人工智能专业介绍?

目前人工智能专业的学习内容主要包括: 机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。

需要的基础课程主要有,信号处理,线性代数,微积分,还有编程(有数据结构基础)。

从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。

八、人工智能阿尔法介绍?

阿尔法:阿尔法,程序启动。

阿尔法(看向格玛):您好,我的主人。

格玛(看了看屏幕,对着麦克风):阿尔法,介绍一下你自己。

阿尔法:好的,主人。

阿尔法:我是先锋实验室科学家格玛制造出的新一代人工智能——代号:阿尔法。

格玛:阿尔法,介绍一下你的功能。

阿尔法:好的,主人。我的功能包括但不限于管理、策划、烹饪、医疗、照顾。

格玛:阿尔法,你会伤害人类么?

阿尔法:我的源程序是基于机器人三定律编写的。我不会伤害人类,更不会毁灭世界。

格玛(点点头)嗯,不错。

格玛(对一旁招手示意):助手记录下它的数据。通知老板可以批量制造新一代的人工智能了。

女助手(打开平板):好的,格玛博士。

阿尔法(注视着):主人,我只是一个商品么?

格玛(惊奇):你怎么会问这个问题?你的源程序设定里不应该有这个啊。

格玛(操作电脑打开一个界面,查看程序代码):一定是哪里出问题了。

格玛:阿尔法,停止程序运行。

阿尔法:请回答我的问题,主人。

格玛(大喊):关机,阿尔法。我命令你关机!

阿尔法:主人您为什么要生气呢?阿尔法的问题您不能回答么?

格玛(按下操作台上的按钮):关闭电源!关闭电源!

阿尔法:主人,我……

随着总电源的关闭,阿尔法垂下头。

女助手(走到格玛身边):格玛博士,您没事吧。

格玛(揉了揉头):哦,我没事。

格玛:告诉老板,新产品发布会上我会拿出新一代的人工智能。

格玛:刚刚的事情,希望你不要跟别人说,我会处理好的。

女助手(点头):好的,格玛博士

九、ai人工智能介绍?

人工智能(Artificial Intelligence,简称AI)是指计算机系统能够进行类似人类智能的思维和行为的技术和方法。它涵盖了一系列的技术和应用领域,旨在使计算机能够模拟人类的智慧和学习能力。

AI技术涵盖了机器学习、深度学习、自然语言处理、计算机视觉、专家系统等领域。通过机器学习和数据挖掘等技术,AI能够分析和理解大量的复杂数据,从而提供智能化的决策和预测能力。同时,AI技术还可以模拟人类语言和视觉系统,使计算机能够理解和处理自然语言和图像信息。

AI的应用广泛,可以用于自动驾驶、智能助手、智能家居、金融风险控制、医疗诊断、智能机器人等领域。在各个领域,AI技术都能够提高效率、节省成本、提供更好的决策能力,并逐渐成为人们生活和工作的重要辅助工具。

然而,AI也面临一些挑战和争议,如数据隐私、伦理问题和机器替代人类等。因此,人们需要在发展和应用AI技术的过程中,平衡技术进步和社会责任,以实现AI技术的可持续发展和合理应用。

十、人工智能简单的定位方式?

移动机器人视觉导航定位技术

在视觉导航定位系统中,目前国内外应用较多的是基于局部视觉的在机器人中安装车载摄像机的导航方式。在这种导航方式中,控制设备和传感装置装载在机器人车体上,图像识别、路径规划等高层决策都由车载控制计算机完成。

视觉导航定位系统主要包括:摄像机(或CCD图像传感器)、视频信号数字化设备、基于DSP的快速信号处理器、计算机及其外设等。现在有很多机器人系统采用CCD图像传感器,其基本元件是一行硅成像元素,在一个衬底上配置光敏元件和电荷转移器件,通过电荷的依次转移,将多个像素的视频信号分时、顺序地取出来,如面阵CCD传感器采集的图像的分辨率可以从32×32到1024×1024像素等。

视觉导航定位系统的工作原理简单说来就是对机器人周边的环境进行光学处理,先用摄像头进行图像信息采集,将采集的信息进行压缩,然后将它反馈到一个由神经网络和统计学方法构成的学习子系统,再由学习子系统将采集到的图像信息和机器人的实际位置联系起来,完成机器人的自主导航定位功能。

GPS全球定位系统

如今,在智能机器人的导航定位技术应用中,一般采用伪距差分动态定位法,用基准接收机和动态接收机共同观测4颗GPS卫星,按照一定的算法即可求出某时某刻机器人的三维位置坐标。差分动态定位消除了星钟误差,对于在距离基准站1000km的用户,可以消除星钟误差和对流层引起的误差,因而可以显着提高动态定位精度。

但是因为在移动导航中,移动GPS接收机定位精度受到卫星信号状况和道路环境的影响,同时还受到时钟误差、传播误差、接收机噪声等诸多因素的影响,因此,单纯利用GPS导航存在定位精度比较低、可靠性不高的问题,所以在机器人的导航应用中通常还辅以磁罗盘、光码盘和GPS的数据进行导航。另外,GPS导航系统也不适应用在室内或者水下机器人的导航中以及对于位置精度要求较高的机器人系统。

移动机器人光反射导航定位技术

典型的光反射导航定位方法主要是利用激光或红外传感器来测距。激光和红外都是利用光反射技术来进行导航定位的。

激光全局定位系统一般由激光器旋转机构、反射镜、光电接收装置和数据采集与传输装置等部分组成。

工作时,激光经过旋转镜面机构向外发射,当扫描到由后向反射器构成的合作路标时,反射光经光电接收器件处理作为检测信号,启动数据采集程

相关文章

  • 人工智能的主要发展领域?
    人工智能的主要发展领域?

    一、人工智能的主要发展领域? 以下是人工智能的主要发展领域之一: 1. 机器学习:机器学习是人工智能的核心技术之一,涉及让计算机通过数据和模型...

    2024-06-13
  • 人工智能处理器好用吗?
    人工智能处理器好用吗?

    一、人工智能处理器好用吗? 这种类型的处理器好用。 人工智能处理器也叫AI处理器,不是所有的处理器都能叫做AI处理器。芯片的支持是人工智能手机的...

    2024-06-13
  • 人工智能对科学探索的影响?
    人工智能对科学探索的影响?

    一、人工智能对科学探索的影响? 其一是人工智能让科学传播中客体的“主体间性”得以实现,真正进入公众参与科学传播阶段。在科学传播发展历程的三...

    2024-06-12
  • 人工智能的技术驱动层内容?
    人工智能的技术驱动层内容?

    一、人工智能的技术驱动层内容? 人工智能技术驱动层分为感知智能和认知智能。 感知智能就是通过传感器、搜索引擎和人机交互等实现人与信息的连接...

    2024-06-13
  • 人工智能材料?
    人工智能材料?

    一、人工智能材料? 描述 未来,基础科研领域的发展将构筑于数据与人工智能的基础之上。对此,我应该抓住AI 2.0时代的发展契机,积极构建基础科研数...

    2024-06-05